Part II	Exploring Relationships Between Variables
Chapter 7	Scatterplots, Association, and Correlation
Scatterplot	Shows the relationship between two quantitative variables on the
_	same cases (individuals).
is plotted on the x-axis.	Explanatory (independent/input) variable
is plotted on the y-axis.	Response (<i>dependent</i> /output) variable
Once we make a scatterplot, we	1. Form : straight, curved, no pattern, other?
describe association by telling	2. Direction : + or – slope?
about:	3. Strength: how much scatter {how closely points follow the form}
	4. Unusual Features: outliers, clusters, subgroups?
is a deliberately vague	Association
term describing the relationship	
between two variables. If	
positive then	increases in one variable generally correspond to increases in the
	other.
Correlation describes the	strength
and of the	direction, linear
relationship between two	
variables, without	quantitative
significant	outliers.
3 conditions needed for	1. Quantitative Variables
Correlation:	2. Straight Enough
	3. Outlier
The correlation coefficient is	finding the average product of the z-scores (standardized values).
found by	$\sum z_{\mu} z_{\mu}$
	$r = \frac{2 - \frac{1}{2} - \frac{1}{2}}{n - \frac{1}{2}}$
It's value ranges from	n-1
, it has no, and is	-1 to ± 1
immune to changes of	scale or order
Perfect correlation r –	
$\alpha_{\rm ccurs}$ only when	± 1 the points lie exactly on a straight line
ceedrs only when	(you can perfectly predict one variable knowing the other)
No correlation r –	(you can perfectly predict one variable knowing the other)
means that knowing one $\frac{1}{2}$	0
variable gives you	no information about the other variable
Vou should give the and	Mean
of x and y along with	Standard deviation
the correlation because	Correlation is not a complete description of two-variable data and
the correlation because	the its formula uses means and standard deviations in the z-scores
Scatterplots and correlation	the his formula uses means and standard deviations in the 2-scores.
coefficients never prove	causation
Lurking variable	Δ variable other than x and x that simultaneously affects both
	variables accounting for the correlation between the two
To add a categorical variable to	
an existing scatterplot	use a different plot color or symbol for each category
an existing scatterpiot	use a unreferit plot color of symbol for each category.

Chapter 8	Linear Regression
Regression to the mean	Because the correlation is always less than 1.0 in magnitude, each
	predicted \hat{y} tends to be fewer standard deviations from its mean than
	its corresponding x was from its mean. ($\hat{z}_y = rz_x$)
Residual	Observed value – predicted value
	$y - \hat{y}$
If positive	Then the model makes an underestimate.
If negative	Then the model makes an overestimate.
Regression line	The unique line that minimizes the variance of the residuals (sum of
Line of best fit	the squared residuals).
For standardized values	$\hat{z}_{y} = rz_{x}$
For actual x and y values	$\hat{y} = b_0 + b_1 x$
To calculate the regression line	rs
in real units (actual x and y	1. Find slope, $b_1 = \frac{y}{c}$
values)	S_x
	2. Find y-intercept, plug b_1 and point (x, y) [usually (\bar{x} , \bar{y})]
	into $\hat{y} = b_0 + b_1 x$ and solve for b_0
	3. Plug in slope, b_1 , and y-intercept, b_0 , into $\hat{y} = b_0 + b_1 x$
3 conditions needed for Linear	1. Quantitative Variables
Regression Models:	2. Straight Enough – check original scatterplot & residual scatterplot
/* same as correlation */	3. Outlier (clusters) –points with large residuals and/or high leverage
R^2	The square of the correlation, r , between x and y
	The success of the regression model in terms of the fraction of the
	variation of y accounted for by the model.
	(differences in x explain XX% of the variability in y)
	(The model explains XX% of the variability in y)
A high K	Does not demonstrate the appropriateness of the regression.
Looking at a	a scatterplot of the residuals vs. the x-values.
is a good way to check the	
Straight Enough Condition.	(appropriateness)
It should be	boring: uniform scatter with no direction, shape, or outliers
Theis the key to assessing	variation in the residuals
how well the model fits	
(extracts the form).	
Standard deviation of the	Gives a measure of how much the points spread around the
residuals, s_e	regression line.
$1 - R^2$	The fraction of the original variation left in the residuals.
	(The percentage of variability not explained by the regression line.)
Extrapolations	Dubious predictions of y-values based on x-values outside the range
	of the original data.